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Abstract
Within the idealized scheme of a one-dimensional Frenkel–Kontorova-like model, a special
‘quantized’ sliding state was found for a solid lubricant confined between two periodic layers
(Vanossi et al 2006 Phys. Rev. Lett. 97 056101). This state, characterized by a nontrivial
geometrically fixed ratio of the mean lubricant drift velocity 〈vcm〉 and the externally imposed
translational velocity vext, was understood as due to the kinks (or solitons) formed by the
lubricant due to incommensuracy with one of the substrates, pinning to the other sliding
substrate. A quantized sliding state of the same nature is demonstrated here for a substantially
less idealized two-dimensional model, where atoms are allowed to move perpendicularly to the
sliding direction and interact via Lennard-Jones potentials. Clear evidence for quantized sliding
at finite temperature is provided, even with a confined solid lubricant composed of multiple (up
to six) lubricant layers. Characteristic backward lubricant motion produced by the presence of
‘anti-kinks’ is also shown in this more realistic context.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of lubricated friction is a fascinating one, both
from the fundamental point of view and for applications.
Lubricants range from thick fluid layers to a few or even single
mono-layers, often in a solid or quasi-solid phase (boundary
lubrication). In the present work, we address the effects of
lattice parameter mismatch of the solid boundary lubricant
and the two confining crystalline surfaces. In general, perfect
inter-atomic matching tends to produce locking, while sliding
is always favored by ‘defective’ lines (misfit dislocations),
which can be introduced precisely by incommensuration of the
lubricant and the sliding substrate lattice parameters. In our
three-length-scale slider–lubricant–slider confined geometry,
this lattice mismatch may give rise to a very special ‘quantized’
sliding regime, where the mean lubricant sliding velocity is
fixed to an exact fraction of the relative substrate sliding
velocity. This velocity fraction, in turn, is a simple function
of the lubricant ‘coverage’ with respect to the less mismatched

of the two substrate surfaces [1, 2]. This special sliding mode
was discovered and analyzed in detail in a very idealized one-
dimensional (1D) Frenkel–Kontorova (FK)-like model [1]: the
plateau mechanism was interpreted in terms of solitons, or
kinks (the 1D version of misfit dislocations), being produced
by the mismatch of the lubricant periodicity to that of the
more commensurate substrate, with these kinks being rigidly
dragged by the other, more mismatched, substrate.

In the present work, we investigate the presence of similar
velocity plateaus associated with solitonic mechanisms in a
more realistic geometry: a two-dimensional (2D) x–z model
of Lennard-Jones (LJ) solid lubricant.

2. The 2D model

We represent the sliding crystalline substrates by two rows of
equally spaced ‘atoms’. Between these two rigid layers, we
insert Np identical lubricant atoms, organized in Nlayer layers
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Figure 1. A sketch of the model with the rigid top (solid circles) and
bottom (open) layers (of lattice spacing at and ab respectively), the
former moving at externally imposed x-velocity vext. One or more
lubricant layers (shadowed) of rest equilibrium spacing a0 are
confined in between.

(see figure 1, where Nlayer = 5). While the mutual positions of
top and bottom substrate atoms are fixed, the lubricant atoms
move under the action of pairwise LJ potentials

�a(r) = εa

[(σa

r

)12 − 2
(σa

r

)6
]

(1)

describing the mutual interactions between them, and with
the substrate atoms as well. To avoid long-range tails, we
set a cutoff radius at r = rc = 2.5 σa, where �a(rc) �
−8.2 × 10−3 εa.

For the two substrates and the lubricant we assume
three different kinds of atoms, and characterize their mutual
interactions as truncated LJ potentials (�bp, �pp and �tp refer
to interaction energies for the bottom–lubricant, lubricant–
lubricant and top–lubricant interactions, respectively) with the
following LJ radii σa:

σtp = at, σbp = ab, and σpp = a0, (2)

which, for simplicity, are set to coincide with the fixed spacings
at and ab between neighboring substrate atoms, and the
average x-separation a0 of two neighboring lubricant atoms,
respectively. This restriction is only a matter of convenience,
and is not essential to the physics we are describing. The
choice of slightly different values of σtp and σbp does not
affect the lubricant to substrate density ratios, which are the
crucial ingredient driving the ‘quantized’ sliding state we
address here: accordingly, very similar results are observed.
If however the LJ radii were taken much larger or smaller
than the corresponding lattice parameters, then undesired
phenomena could occur, such as lubricant atoms squeezing
in between the substrate layers and escaping confinement
altogether. The three different periodicities at, a0 and ab define
two independent dimensionless ratios:

λt = at

a0
, λb = ab

a0
, (3)

the latter of which we take closer to unity, max(λb, λ
−1
b ) < λt,

so that the lubricant is closer in registry to the bottom substrate
than to the top.

For simplicity, we fix the same LJ interaction energy
εtp = εpp = εbp = ε for all pairwise coupling terms. We
also assume the same mass m for all particles. We take ε, a0,

and m as energy, length, and mass units. This choice defines
a set of ‘natural’ model units for all physical quantities; for
instance, velocities are measured in units of ε1/2 m−1/2. In the
following, all mechanical quantities are expressed implicitly in
the respective model units.

The interaction with the other lubricant and slider particles
produces a total force of the j th lubricant particle

�Fj = −
Nt∑

i=1

∂

∂�r j
�tp

(|�r j − �rt i |
)

−
Np∑

j ′=1
j ′ �= j

∂

∂�r j
�pp

(|�r j − �r j ′ |) −
Nb∑

i=1

∂

∂�r j
�bp

(|�r j − �rb i |
)
,

(4)

where �rt i and �rb i are the positions of the Nt top and Nb bottom
atoms. By convention, we select the frame of reference where
the bottom layer is immobile. The top layer moves rigidly at a
fixed horizontal velocity vext, and can also move vertically (its
inertia equals the total mass Ntm of its atoms) under the joint
action of the external vertical force −F applied to each particle
in this layer plus that due to the interaction with the particles in
the lubricant layer:

rt i x(t) = i at + vext t, rt i z(t) = rt z(t), (5)

where the equation governing rt z is

Ntm r̈t z = −
Nt∑

i=1

Np∑
j=1

∂�tp

∂rt i z

(|�rt i − �r j |
) − Nt F. (6)

To simulate finite temperature in this driven model, we
use a standard implementation of the Nosé–Hoover thermostat
chain [3, 4], rescaling particle velocities with respect to the
instantaneous lubricant center of mass (CM) velocity vcm.
The Nosé–Hoover chain method is described by the following
equations [4]:

m �̈r j = �Fj − ξ1m (�̇r j − �vcm), (7)

ξ̇1 = 1

Q1

(
Np∑
j=1

∣∣∣�̇r j − �vcm

∣∣∣2 − gKBT

)
− ξ1ξ2, (8)

ξ̇i = 1

Qi

(
Qi−1ξ

2
i−1 − KBT

) − ξiξi+1, (9)

˙ξM = 1

QM

(
QM−1ξ

2
M−1 − KBT

)
. (10)

The thermostat chain acts equally on all lubricant particles
j = 1, . . . , Np. The M = 3 thermostats are characterized by
the effective ‘mass’ parameters Q1 = Np, Q2 = Q3 = 1; the
coefficient g = 2(Np − 1) fixes the correct equipartition; the
auxiliary variables ξi (i = 1, . . . , M) keep the kinetic energy
of the lubricant close to its classical value Np KBT (measured
in units of the LJ energy ε). We integrate the ensuing equations
of motion within a x-periodic box of size L = Npa0, by means
of a standard fourth-order Runge–Kutta method [5]. We note
that the Nosé–Hoover thermostat is not generally well defined
for a forced system in dynamical conditions. However, it can
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be assumed to work at least approximately for an adiabatically
moving system, where the Joule heat is a small quantity [6].

We usually start off the dynamics (for a single lubricant
layer) from equally spaced lubricant particles at height ri z =
ab and with the top layer at height rt z = ab + at, but we also
considered different initial conditions: after an initial transient,
sometimes extending for several hundred time units, the sliding
system reaches its dynamical stationary state. For many
layers we start off with lubricant particles at perfect triangular
lattice sites, and the top slider correspondingly raised. In
the numerical simulations, adiabatic variation of the external
driving velocity is considered and realized by changing vext in
small steps, letting the system evolve at each step for a time
long enough for all transient stresses to relax. We compute
accurate time-averages of the physical quantities of interest by
averaging over a simulation time in excess of a thousand time
units, starting after the transient is over. At higher temperature,
fluctuations of all physical quantities around their mean values
increase, thus requiring even longer simulation times to obtain
well converged averages.

3. The plateau dynamics

We study here the model introduced in section 2, firstly for
a single lubricant layer and then for a thicker multi-layer of
Nlayer = 2 . . . 8. In all cases, we consider complete layers,
realizing an essentially crystalline configuration at the given
temperature assumed well below the melting temperature. We
focus our attention on the dragging of kinks and on the ensuing
exact velocity-quantization phenomenon. We expect that, as
in previous studies of the idealized 1D model [1, 2, 7–13], the
ratio w = 〈vcm〉/vext of the lubricant CM x velocity to the
externally imposed sliding speed vext should stay pinned to an
exact geometrically determined plateau value, while the model
parameters, such as vext itself or temperature T or load F , are
made to vary over wide ranges. In detail, the plateau velocity
ratio

wplat = 〈vcm〉
vext

=
1
a0

− 1
ab

1
a0

= λb − 1

λb
= 1 − 1

λb
(11)

is a function uniquely of the kink linear density, determined
by the excess linear density of lubricant atoms with respect to
that of the bottom substrate, thus of the length ratio λb; see

equation (3). The ratio a−1
0 −a−1

b

a−1
0

represents precisely the fraction

Nkink/(Np/Nlayer) of kink defects in each lubricant layer. The
top length ratio λt, assumed much more different from unity,
plays a different but crucial role, since it sets the kink coverage
� = Nkink/Nt = (1 − λ−1

b )λt. Assuming that the 1D mapping
to the FK model sketched in [11] also makes sense in the
present richer geometry, the coverage ratio � should affect the
pinning strength of kinks to the top corrugation, and thus the
robustness of the velocity plateau. We shall try to find out if �

assumes a similar role in the 2D model in section 3.2 below.
In the present work we consider mainly a geometry of

nearly full commensuration of the lubricant to the bottom
substrate, i.e. λb near unity: in particular, we set λb = 29/25 =
1.16, which produces merely four kinks every 29 lubricant

Figure 2. Average velocity ratio w = 〈vcm〉/vext of a single lubricant
layer as a function of the top-layer sliding velocity vext (increased
adiabatically) for three different temperatures. Thermal effects
degrade the perfect quantized-velocity plateau, which is very clear at
low temperature. Inset (a): negligible simulation-size dependence of
the dynamical critical depinning point. 4–29–25 and 8–58–50
indicate the numbers of particles Nt–Np–Nb in the simulations. All
simulations are carried out with F = 25. The plateau velocity ratio
(dot–dashed) is wplat = 4

29 � 0.137 93 (equation (11)).

particles in each layer. This value of λb produces a good
kink visibility, but it is not in any sense special. We also
investigate the plateau dynamics for an anti-kink configuration
λb = 21/25 = 0.84. Even for a λb value significantly distinct
from unity, such as the golden mean (1 + √

5)/2 � 1.62, we
have evidence of perfect plateau sliding. The present model
allows us to address for the first time the nontrivial issue of
the survival of the quantized plateau even for a somewhat more
realistic 2D dynamics, for several interposed lubricant layers
and for finite temperature.

3.1. Single lubricant layer

Figure 2 reports the time-averaged horizontal velocity 〈vcm〉 of
the single-layer lubricant CM, as a function of the velocity vext

of a fully commensurate top layer (� = 1) for three different
temperatures of the system. The velocity ratio w = 〈vcm〉/vext

is generally a nontrivial function of vext, showing wide flat
plateaus and regimes of continuous evolution. The plateau
velocity matches perfectly the ratio wplat of equation (11).
The plateau extends over a wide range of external driving
velocities, up to a critical velocity vcrit, whose precise value
is obtained by ramping vext adiabatically; beyond vcrit, the
lubricant leaves the plateau speed and tends to become pinned
to the (better matched) bottom layer. On the small-vext side of
the plateau, despite error bars indicating increasing uncertainty
in the determination of w, data are consistent with a plateau
dynamics extending all the way to the static limit vext → 0, as
in the 1D model [2]. As temperature increases, 〈vcm〉 tends to
deviate slightly from the perfect plateau value. At the highest
temperature considered, kBT = 0.5 ε, near melting of LJ solid
at zero pressure [14], no plateau is seen in the simulations.
Finite-size scaling, figure 2(a), shows little size effect on the
plateau, and in particular on its boundary edge vcrit.
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Figure 3. Typical positions of top (filled circles), lubricant
(shadowed) and bottom (open) atoms, in the plateau state of a
vext = 0.1 T = 0.001 simulation for one lubricant layer. Kinks are
visible as touching circles. (a) Iso-curves of the potential energy
experienced by a single lubricant particle and produced by the
bottom chain; (b) iso-curves for the top chain. The equipotential
surfaces drawn are V = 10 (long-dashed), V = 0 (fine-dashed),
V = −1 (solid) and V = −1.5 (dotted). The vertical displacements
of the lubricant are produced by the bottom layer pushing kinks out,
and enhanced by the interaction with the perfectly matching (� = 1)
top layer pressed against the lubricant by a load F = 25.

The specific roles of the two substrates in the dynamical
plateau state are illustrated by a snapshot of the plateau-state
atomic coordinates and potentials at an arbitrary time, shown in
figure 3. The bottom layer produces a potential energy whose
iso-levels are sketched in the upper panel of figure 3: with its
near-matching corrugation, this potential profile is responsible
for the creation of kinks, as in the simple 1D model [1, 2].
A kink is visible as a local compression of the lubricant atoms
trapped in the same minimum of the bottom substrate potential.
In the quantized-velocity state, kinks pin to the minima of the
top potential (and slide with it at vext), as illustrated in the lower
panel of figure 3.

We also observe precise velocity quantization as the
downward load F applied to the top layer is changed in
magnitude. At larger temperature, where thermal fluctuations
tend to destabilize the quantized velocity, calculations show
that the quantized-velocity state benefits higher loads F .

Figure 4. Comparison of the velocity ratio w = 〈vcm〉/vext of a
lubricant mono-layer and bi-layer as the top-layer velocity vext is
increased adiabatically, for kink coverages � = 1 and � = 0.8. All
simulations are carried out with F = 25, T = 0.2, and λb = 29

25

(plateau velocity ratio wplat = 4
29 ). The velocity vcrit at which the

plateau dynamics ends does depend on �.

3.2. Two lubricant layers and role of kink coverage

We now repeat the simulations of the previous section by
considering a doubled number of lubricant particles in the
same box size. Even when starting from arbitrary geometries,
the lubricant atoms eventually arrange themselves in a regular
double layer, a stripe of a triangular lattice. After a transient,
a quantized-velocity plateau develops, showing essentially the
same conditions as described for a single layer in figure 2,
with a clear depinning transition at a critical velocity vcrit

remarkably close to that of a single layer. In this plateau state,
we can still identify kinks in the lubricant layer adjacent to the
bottom potential, while the other layer shows weaker x-spacing
modulations. The vertical displacements of both layers are
induced by the interactions with both the top- and the bottom-
layer atoms.

The matching of the number of kinks to the number of top
atoms � = Nkink/Nt = 1 is clearly very favorable for kink
dragging, thus for the plateau phenomenon. It is important
to investigate situations where this strong commensuration
is missing. As an example of lesser commensuration, we
consider five, rather than four, particles in the top chain, thus
producing a coverage ratio � = 4

5 = 0.8, still commensurate,
but weakly so. Figure 4 shows that a perfect plateau again
occurs also for � = 4

5 , whether the lubricant is a mono- or a
bi-layer, and apparently this less commensurate configuration
produces an even more robust quantized-velocity state, at least
for Nlayer = 1. We note however that this increased stability
may be an artifact of having increased the total load Nt F , and
thus the applied ‘pressure’ on the lubricant.

It is instructive to study how the depinning point vcrit varies
when the ratio of commensuration � varies. We study this
evolution at fixed λb, thus fixed density of solitons, while the
number of surface atoms changes in the top substrate. Figure 5
reports the depinning velocity vcrit, always evaluated through
an adiabatic increase of vext, as a function of the number Nt of
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Figure 5. Variation of the plateau boundary velocity vcrit as a
function of the inverse coverage �−1 = Nt/Nkink for a lubricant
mono-layer. The calculations show a sudden increase of vcrit at
�−1 � 1. Simulations are carried out with F = 25, T = 0.2, and
λb = 29

25 .

top-layer atoms, or the inverse commensuration ratio 1/� =
Nt/Nkink. One mono-layer shows a monotonically increasing
depinning velocity vcrit, characterized by a sudden increase in
correspondence to the fully matching coverage � = 1. For
even larger Nt ∼ Nb (not shown), eventually kinks cannot
ingrain in the much finer oscillation of the top potential energy
and we find a weakening of the plateau regime.

3.3. Lubricant multi-layer

We come now to investigate the role of Nlayer on the
dynamically pinned state. Figure 6 shows the dependence
of the critical velocity vcrit on the number Nlayer of layers
of the confined lubricant in the strong-pinning condition
characterized by � = 1, F = 25, and T = 0.2. For
up to Nlayer = 6 layers we find quite robust perfect velocity
plateaus, with a remarkably weak dependence of vcrit on Nlayer.
Figure 7 shows that little or no sign of kinks (horizontal
displacements) is visible above the two lowermost layers near
the bottom. However, vertical corrugations of the lubricant
propagate from bottom to top, corresponding to kinks. These
vertical displacements are mediating agents transmitting the
kink tendency to pin to the top-layer corrugations, and giving
rise to the observed perfect velocity quantization, at least for
small vext.

For a further increase in Nlayer, this z-displacement
mechanism becomes rapidly ineffective, as evident in figure 8:
the vertical corrugations induced by the substrates reach into
the solid lubricant for about four layers, while inner layers,
such as the fifth layer of figure 8, remain essentially flat,
thus not supporting the dynamic pinning. In the unpinned
state, the top chain slides over the upper lubricant layer, but
the deformation it induces propagates only through a few
superficial layers and cannot drag the kinks created by the
bottom potential. Even in the large-vext unpinned state, the
relative positions of lubricant atoms are essentially ordered,
and show neither defects nor a liquid configuration, due to

Figure 6. Critical depinning velocity vcrit as a function of the number
Nlayer of lubricant layers, in a condition that favors pinning: F = 25,
T = 0.2, � = 1. The data show the tendency for vcrit to drop
considerably as the number of lubricant layers increases, Nlayer > 6,
beyond the boundary-lubricating regime.

Figure 7. Top (filled circles), lubricant (shadowed) and bottom
(open) atoms in a typical snapshot of the plateau dynamical state for
Nlayer = 5: kinks are seen only in the horizontal displacements of the
two lowest layers, while vertical undulations of all lubricant layers
are apparent. Equal-potential profiles for the potentials created by the
top and the bottom layers, at V = 10 (long-dashed), V = 0 (dashed),
V = −1 (solid) and V = −1.5 (dotted). All simulations are carried
out with vext = 0.1, T = 0.001 and F = 25.

the low temperature considered, confinement [15, 16] and full
commensuration.

3.4. Anti-kinks

Previous 1D work showed the surprising phenomenon of
backward lubricant sliding corresponding to the dragging of
anti-kinks [1, 2]. We set now a reversed condition of quasi-
commensuration of the chain to the ab substrate, λb =
21/25 = 0.84, which produces a negative x-density of kinks

5
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Figure 8. Top (solid circles), lubricant (shadowed) and bottom
(open) atoms in a typical snapshot of the fragile plateau dynamical
state for Nlayer = 9: kinks are seen only in the horizontal
displacements of the first two layers, and vertical spatial modulations
persist into the ‘thick’ lubricant for about four layers. Equal-potential
surfaces for the potentials created by the top and the bottom chain
lubricant layers at V = 10 (long-dashed), V = 0 (dashed), V = −1
(solid) and V = −1.5 (dotted). Remaining simulation parameters are
vext = 0.1, T = 0.001 and F = 25.

−4/21 a−1
0 � −0.190 a−1

0 . This condition in fact produces,
instead of local compressions, local dilations of the chain,
classifiable as anti-kinks, alternating with in-register regions.
The anti-kinks again pin, like kinks did, to the corrugations
of the top substrate, which drag them along at full speed vext.
As anti-kinks are basically missing particles, like holes in
semiconductors, they carry a negative mass. Their rightward
motion produces a net leftward motion of the lubricant: the
lubricant chain moves in the opposite direction with respect to
the top layer [1]. Figure 9 displays a clear reversed-velocity
plateau for both one layer and two layers, thus confirming this
mechanism. The perfect plateau is comparably weaker than
the plateau produced by λb > 1, as seen from it ending at a
smaller vext.

4. Discussion and conclusions

Within the idealized scheme of a simple 1D FK-like model,
a special ‘quantized’ sliding state was found for a solid
lubricant confined between two periodic layers [7]. This state,
characterized by a nontrivial geometrically fixed ratio of the
mean lubricant drift velocity 〈vcm〉 and the externally imposed
translational velocity vext, was understood as due to the rigid
dragging of kinks (or solitons), formed by the lubricant due to
incommensuration with one of the substrates, pinning to the
other sliding substrate. In the present work, a quantized sliding
state of the same nature is demonstrated for a substantially
less idealized 2D model of boundary lubrication, where atoms
are allowed to move perpendicularly to the sliding direction
and interact via LJ potentials. We find perfect plateaus, at the

Figure 9. Average velocity ratio w = 〈vcm〉/vext as a function of the
top-layer velocity vext (increased adiabatically) for a model
composed by 4, 21 and 25 atoms in the top, lubricant and bottom
chains: these correspond to a λb = 21/25 = 0.84, which according
to equation (11) produces perfectly quantized dynamics at
wplat = − 4

21 � −0.190 476 (dot–dashed line). The other simulation
parameters are F = 25, T = 0.2 and � = 1.

same geometrically determined velocity ratio wplat as observed
in the simple 1D model for varied driving speed vext, not
only at low temperatures but also for temperatures not too far
from the melting point of the LJ lubricant, whether the model
solid lubricant runs from a single layer to several layers. An
increased load F tends to benefit the plateau state at higher
temperatures. The velocity plateau, as a function of vext, ends
at a critical velocity vcrit, and for vext > vcrit the lubricant
moves at a speed which is generally lower than that of the
plateau state. In fact, by cycling vext, the layer sliding velocity
exhibits hysteretic phenomena around vcrit, which we shall
investigate in detail in future work. The unpinning velocity
vcrit is linked to the commensuration � of kinks to the upper
slider period: � = 1 marks a sudden rise of vcrit. A clear
plateau dynamics is demonstrated even for a confined solid
lubricant composed of several (up to Nlayer = 6) lubricant
layers: the strength of the plateau (measured by vcrit) is a
generally decreasing function of the number of layers. The
striking backward lubricant motion produced by the presence
of ‘anti-kinks’ is again recovered in this more realistic context.
The present work focuses on ordered configurations: both
substrates are perfect crystals and the lubricant retains the
configuration of a strained crystalline solid. The dynamical
depinning speed vcrit, that we usually find of the order of a
few model units (corresponding to ∼103 m s−1 for realistic
choice of the model parameters), is very large compared to
typical sliding velocities investigated in experiments. This
suggests that sliding at a dynamically quantized velocity is
likely to be extremely robust. In experiments, depinning
from the quantized sliding state is likely to be associated with
mechanisms such as disorder or boundary effects, rather than
excessive driving speed. The role of disorder and defects both
in the substrate [17] and in the lubricant will be the object of
future investigation. A detailed investigation of the stick–slip
phenomena and of other features of the dynamical properties
will also require further study.
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